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Principal Investigator of this project has been Professor Michael V. Klibanov; co-principal 
investigator has been Professor Semion Gutman, Department of Mathematics, University of 
Oklahoma, Norman, OK 73019 

Five main goals of research pursued under the funding were: 

1. Globally convergent numerical methods for multidimensional Inverse Scat- 
tering Problems (ISPs). 

While a number of numerical methods for 2 - D ISPs has been developed in the past, 
convergence results were not proven. Therefore, the most challenging goal of the project 
was the development of numerical methods for n - D ISPs (n = 2,3) with rigorously estab- 
lished global convergence. The first breakthrough result was published in [18]. It was shown 
in [18] how to construct globally strictly convex cost functional for a 3-D ISP for the wave 
equation utt = Au + q(x)u, with the unknown potential q(x). We call this approach (CWM) 
Carleman's Weight Method. 

However, a much better understanding of the advantages of CWM came recently [19, 
20].^ Specifically, the technique of [18] was generalized and became more convenient both 
for its further theoretical development and computational implementation. A most essential 
novelty of the recent works [19, 20], as compared with [18] consists in cutting - off the Fourier 
series of a function associated with the PDE solution u(x,t) with respect to t only, rather 
than with respect to both t and x (the number iV of the Fourier harmonics with respect to t 
is a regularization parameter in this approach). This idea led us to a realization of the fact 
that one should employ Carleman's weights for the Laplace's operator itself, rather than for 
a more complicated hyperbolic/parabolic operator. The latter fact, in turn, has made CWM 
computationally feasible indeed. In addition, it should allow us to extend CWM on a number 
of ISPs important for applications to some ONR missions; see section 5 for some details. 

Historically, for the first time, Carleman estimates were introduced into the theory of 
inverse problems by Bukhgeim and Klibanov in 1981 for the proofs of global uniqueness 
results [4]. Since 1991 Klibanov et.al. have been employing them for the proofs of convergence 
results for numerical methods for some linear ill-posed problems [1-3]. However, prior to [18] 
Carleman's weight functions have never been employed directly in the numerical schemes It 
was our surprising discovery in [18] that Carleman's weights can lead to globally convergent 
methods for n - D ISPs, which are essentially nonlinear. 

2. Stability theorems and numerical methods for ill-posed Cauchy problems 
for linear elliptic and hyperbolic PDEs [1-3]. A tight linkage between these Cauchy 
problems and numerical methods for ISPs was demonstrated in [18-20]. In the elliptic case 
such a problem means that the Dirichlet and Neumann data are assigned on a part of the 
boundary only, rather than, say Dirichlet data on the whole boundary. Another option 
would be to solve an overdetermined problem by assigning Dirichlet data, for example on 
the whole boundary and Neumann data on its part (c.f.. Table 3 in [1]). In the hyperbolic 
case the Dirichlet and Neumann data are given on the side of the time cylinder (or on its 
part), whereas data at t = 0 are unknown. 

In the sixties, French mathematicians R. Lattes and J. L. Lions suggested an elegant 



and computationally feasible algorithm for these problems, the so-called quasi-reversibility 
method (QR) [22]. By QR, one reduces these problems to the boundary value problems 
for some 4th order PDEs. However, QR was not developed for the hyperbolic case, and 
convergence rates were not established in [22] . Likewise, QR was not applied to ISPs in 
[22]. 

An essentially new approach to QR was proposed in [1-3]. It consists of the employment 
of Carleman estimates for proofs of its convergence rate (however, Carleman's weights were 
not used directly in the numerical schemes, as in the case of CWM). Successful computational 
tests for the elliptic case were performed in [l]. Furthermore, this approach enabled us to 
extend QR to hyperbolic equations and to obtain Lipshitz stability estimates for this problem 
[2,3]. 

Because of the above similarities between these problems and CWM, the latter can be 
considered, at some extent, as a natural and far going development of our preceeding works 
in this direction. 

3. Computations of a 3-D ISP in a reasonable CPU time. While 2-D ISPs have 
been computed by many authors, a real computation of a 3-D ISP, in a reasonable CPU 
time, was stated as a challenge by D. Colton and R. Kress in their book [23, p.ll]. 

A version of the quasi-Newton method was developed and tested computationally, in 
the 2-D case, for an ISP for the equation Au + k2V(x)u = 0 at a fixed frequency k > 0 
[7-9,11,12]. A breakthrough 3-D computational result was obtained in fl2l by the method of 
[7-9]. 

4. Understanding of mathematical models for inverse problems of waves/infra- 
red light propagation in random media such as sea water, human tissues, etc. 

We have started from the non-stationary Scrödinger equation which describes wave prop- 
agation in random media in cases where the large scale (deterministic) features of the medium 
are much bigger than the typical wave length [17]. Such situations arise in ocean acoustics 
where waves propagate for long distances in channels characterized by small angles. A con- 
vergent numerical method for the corresponding ISP was developed in [17]. This is the first 
publication in which a numerical method for an n - D ISP (n > 1) in random-media was 
rigorously developed. 

Recently, we became focused on infra-red light propagation in turbid (i.e., diffuse) media, 
which leads one to ISPs either for the telegraph (i.e. hyperbolic),or for the diffusion (i.e.' 
parabolic) equation This topic has applications in mine detection in the coastal waters and 
medical imaging; see section 4 for details. Preliminary computations of a corresponding ISP 
were performed in [13]. The goal of [13] was twofold: (i) since "diffusion" means a sort of 
"disorder", we have tried to check, by a simple algorithm, whether one can indeed image 
small inclusions hidden in a diffuse background; and (ii) to verify a new imaging idea which 
we call the focusing procedure. By this procedure, one first obtains a rough image using a 
rough grid. This image provides information about locations of small abnormalities, which 
are the main focus of the ISP solution. Then one uses a finer grid in the neighborhoods of 
these abnormalities (but not everywhere in the medium) to enhance the initial image. While 
this idea is well known for forward problems (in the Finite Element Method, for example), 
it was never used before for inverse problems. It was demonstrated in [13] that: (i) small 



inclusions within the diffuse background can be imaged, and (ii) this focusing procedure 
provides a great improvement of the image quality/resolution. 

5. The phase retrieval problem. The nature of this problem consists of recovering 
the phase of a signal given measurements of intensity. Note that stable phase measurements 
are sometimes hard to carry out in practical applications, so that often only intensity mea- 
surements are available. The phase retrieval problem can often be reduced to the recovery 
of the potential V(x) in the Schrodinger equation y" + (k2 - V(x))y = 0 given the absolute 
value of the reflection coefficient |Ä(A;)| for k € (-00,00). A closely related problem consists 
in the determination of a function given the absolute value of its Fourier transform. 

An novel theory for this problem was developed and two novel numerical methods were 
derived and tested computationally [5, 10, 15, 21]. We have also published a topical review in 
[16]. These results attracted an interest of a wide audience of mathematicians and physicists. 
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